

U p d a t i n g M X A p p s
 to use new features from MX v10

U p d a t i n g M X A p p s f o r M X v 1 0

Page | ii

NDL Software Limited endeavour to ensure that the information contained within this publication is correct and fairly stated, but do not accept

liability for any errors or omissions. NDL Software Limited makes no warranty or representation, either express or implied, with respect to their

software described in this publication.

© NDL Software Limited 2016-2023

Document Number: UpApps4MX10DA108-002

Issue 4 Effective: 28th September 2023

All trademarks and registered names are acknowledged as belonging to their respective owners.

Page | iii

Contents

Introduction .. 1

Synchronise() .. 1

Notifications ... 2

Step-by-step… ... 2

App Studio ... 2

OnAsyncCompletion .. 6

IsDataSourceLocked ... 7

Using Custom Tables ... 8

Creating a New Record .. 9

Modifying an Existing Record .. 10

AddSystemNotification ... 15

Error Handling .. 16

Summary ... 18

U p d a t i n g M X A p p s f o r M X v 1 0

Page | iv

Page | 1

Introduction

This document demonstrates how existing MX apps, created using a version of Digitise Apps’ predecessor MX

prior to MX v10, can be updated to take advantage of newer features introduced in MX v10, primarily those

related to the asynchronous communication functionality, after upgrading to Digitise Apps. The new features

discussed in this document were introduced in MX v10 and continue to be supported in Digitise Apps.

This guide assumes a basic familiarity with MX/Digitise Apps and will not provide an in-depth discussion as to its

usage, although new MX v10 features will be explained in some detail.

Synchronise()

Existing MX apps created using awi MX v8 or earlier rely on using SyncDataSource() and LoadDataSource() to

communicate with the App Server. These two methods use synchronous communication to send data to and

from the server, leaving the user unable to use their application while communication is in progress. Dependent

on the amount of data being sent or received, this can quickly add up to a not-insignificant amount of time spent

waiting for a given transfer to complete. These methods also often require the user to implement complicated

error handling using SetDataErrorOn()/Off() and the like.

The Synchronise() Method was introduced in MX v10 and allows an application to communicate asynchronously

(i.e. in the background) with the server and both send and receive data within a single method call. Thus

Synchronise() can be used in place of both SyncDataSource() and LoadDataSource() allowing a user to send

and receive data whilst still having access to the full range of functionality within their app.

Note that you can also use Synchronise() in synchronous mode which will stop your app whilst the data transfer

is in progress, just like SyncDataSource() and LoadDataSource(), if you prefer.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 2

Notifications

The AddSystemNotification() method was extended in MX v10 to work with all key platforms – Android, iOS ,

Windows Desktop and Windows Universal. It can be used completely independently of Synchronise() – for

example, to alert a community nurse that he/she has an appointment due with a patient – but pairing it with

Synchronise() greatly enhances the asynchronous communication user experience.

Step-by-step…

The remainder of this guide will take you through the process of converting an existing app to include MX v10

features. We will use the NDL demonstration app Report It to illustrate implementing the new features.

App Studio

When a user first downloads and opens the Report It app on a device, the app will check whether or not there is

data on the device and if not, prompt the user to download data. This is a fairly common feature in MX/Digitise

apps, particularly those that require a user to log in and have their username and password verified against a

database before being able to use the app.

In our Report It app, this check is performed in the Application.OnLoad script – i.e. before we’ve actually loaded

a form from our application. While this is perfectly sufficient from a purely functional standpoint, staring at a

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 3

blank screen waiting for data to download somewhat diminishes the user experience:

To avoid this, let’s add in a “sync” form at the beginning of our Report It app. We can modify our

Application.OnLoad script so that while it still checks for data present on the device, it will send the user to

either our new sync form or our menu form, dependent on the outcome:

Our new sync form could look something like this:

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 4

As you can see, the form contains all of the information previously conveyed to the user through the use of a

message box, but has a much more user-friendly look and feel.

Our sync form is where we will encounter the first of the new features introduced in MX v10: Synchronise(). We

are going to incorporate Synchronise() into the OnLoad script of our sync form:

As you can see here, our Synchronise() method takes four arguments. The first is what is known as the “Tag”

parameter, and acts as a unique identifier for this specific Synchronise() transaction. You could have an app that

calls Synchronise() in multiple places and requires a different outcome upon the completion of each of these

transactions. The nature of MX v10’s asynchronous communication is such that the application has no way of

knowing which form the user might be on when the transaction completes so thus it is necessary to be able to

identify the individual transactions using the “Tag”. We’ve named our Synchronise() transaction “initial” – it is,

after all, the first instance of Synchronise() in our application.

Next on the list in any Synchronise() transaction is the “IsAsync” parameter. This is a Boolean specifying whether

or not we want this particular transaction to be carried out asynchronously.

Here’s where it gets a little tricky – in this instance, we want the user to be held on the sync form until the

transaction has finished. However, instead of setting the IsAsync parameter to “FALSE” and forcing our user to

wait until the transaction completes, we’re instead going to tell our app to carry out the data transaction

asynchronously by using “TRUE” as our argument, and are instead going to “trap” the user on our form by not

including any navigation buttons or other ways to move off the form. This may seem somewhat counter-intuitive,

but all will be explained later.

The next two parameters are our data source parameters. When using Synchronise(), we can choose to just

upload data, download data or both upload and download data in the one transaction. The first of these two

parameters allows you to specify data sources to be uploaded to the server and the second, data sources to be

downloaded to the device. In this case, as we’ve already established that the user has no data on their device at

this point, we can take it as a given that there aren’t going to be records to upload so we will specify the upload

parameter as NULL, which means no data will be uploaded. Then for the download parameter we will specify the

data sources we want to download to the device. Our Report It app only uses one table, so we’re going to specify

that as the argument: “Report.Incidents”.

Note that, where required, multiple data sources can be specified in the data source parameters either explicitly

using a comma separated list, such as “datasource1, datasource2, datasource3, …”, or by specifying an empty

string, “”, in which case MX will use the Sync Direction property to determine the default data sources to include

for the parameter containing the empty string. Each data source table has its own Sync Direction property which

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 5

specifies whether the table should be included in a synchronisation if data sources are not explicitly specified. To

exclude all data sources from a particular synchronisation you can specify the relevant data source parameter as

NULL, as we have done here for the upload parameter.

We’ve now set up our very first Synchronise() transaction. So, what was the point of having our transaction

execute asynchronously?

If we had set the IsAsync parameter to “FALSE”, our Synchronise() transaction would essentially have mimicked a

LoadDataSource() operation and would have forced the user to wait until the transaction was completed. A new

feature of MX v10 is that the user has the option to cancel asynchronous transactions – by setting the IsAsync

parameter to “TRUE”, we are going to give the user the option to cancel the sync operation and exit the

application by clicking the “Cancel” text on the form.

We are going to do this by using the new CancelTransaction() method and the unique tag pertaining to the

instance of Synchronise() that we’re cancelling. In this case, we want the app to cancel our “initial”

Synchronise() transaction and then exit the application:

Leaving our “initial” instance of Synchronise() as an asynchronous transaction also frees up our application to

carry out other tasks while the data transfer is in progress. Let’s take advantage of this (and another new MX v10

method) and implement our own progress bar to inform the user of how their Synchronise() transaction is

progressing.

Let’s add a timer and three static text controls to our sync form. We’re going to use two of the static controls to

form our progress bar, while the third is going to be used to display the percentage completion of our

Synchronise() transaction:

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 6

We need to set the interval for the timer we’ve just placed on our form. Let’s do this by using the

SetTimerInterval() method in our form OnLoad script. We need to make sure that our timer is being triggered

fairly frequently or there’s no point in including it – a timer that only has chance to update once or twice before

our Synchronise() transaction terminates isn’t going to be much use. Let’s use an interval of 500 milliseconds.

We now need to include some code in our OnTimer event to update our progress bar.

We can use the new MX v10 method GetTransactionProgress() with our “initial” tag. When called, this method

will return the percentage completion of the Synchronise transaction with the tag “initial”. We can then use the

result of our GetTransactionProgress() method and the .width operator on our two static controls to update the

size of our progress bar. Finally, we can set our third static control to reflect the obtained percentage value.

If we wanted to pursue this further, we could use the GetTransactionState() method to display more information

to the user. Similar to GetTransactionProgress(), this method takes a tag pertaining to a specific Synchronise()

transaction and returns its current state – so sending data, waiting, or receiving data, as examples. This provides

more information to the user than is strictly necessary in the case of our Report It app, so we’re not going to

include it here.

OnAsyncCompletion

Let’s assume the user decides not to cancel the Synchronise() transaction. As previously stated, we’ve essentially

“trapped” the user on the sync form by omitting any navigation buttons. How, then, does the user access the rest

of the content in the app?

Located in the Events section of the Application Properties, there are several new events that have been

introduced in MX v10:

.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 7

We’re going to focus on one of them: OnAsyncCompletion.

OnAsyncCompletion (as the name may suggest) is an application-level event triggered when an asynchronous

transaction completes.

In our OnAsyncCompletion script, we are going to tell the application to take the user to the menu screen once

the asynchronous transaction completes. We could just simply use the SetNextForm() method to accomplish

this but we’re planning on adding more Synchronise() functionality into our app later, so we’ll use an if

statement so the change of form only happens when our “initial” synchronisation completes.

IsDataSourceLocked

So, we’ve added in a “sync screen” to our app, we’ve successfully implemented a Synchronise transaction and

corresponding action in the OnAsyncCompletion event, and our user can now progress to the menu form of our

Report It app. What comes next?

Well, our user will need to be able to send and receive data to and from the remote database, so let’s go to the

menu form and add in another Synchronise() command in the OnClick script of our “Sync Data” button.

This leaves us with an interesting problem. When a Synchronise() transaction is running asynchronously, the

data source it uses is essentially “locked for editing”. So what happens if the user clicks the “Sync Data” button,

initialises a Synchronise() transaction, then clicks the “Sync” button again?

Well, an app can only process one Synchronise() transaction at once and so it gives an error:

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 8

Fortunately, there is a way to deal with this: IsDataSourceLocked().

IsDataSourceLocked() is another method introduced in MX v10, and (again, as the name suggests) checks to see

whether or not a data source has been locked by a Synchronise() transaction. Let’s add it into the OnClick script

of our “Sync Data” button:

Here, we’ve chosen just to add a message box informing the user that a Synchronise() is already in progress if

our data source is locked. We could also use a combination of IsDataSourceLocked() and CancelTransaction()

to cancel the pre-existing Synchronise() transaction and instigate a new one, if required.

So, we’ve now fixed the errors that we encountered if we tried to initialise multiple Synchronise() transactions.

This has brought another issue to light though – if our data source is locked whilst a Synchronise() transaction is

in progress, this means our user can’t write data to it. So how can we allow them to continue to use the app

while a data transfer is in progress?

Using Custom Tables

There are two ways to get round the locked data source problem. The first is quite simple – we can add in

another IsDataSourceLocked() check in the OnClick script of our “New Report” button:

While this is the simplest way to circumvent the problem, it has some fairly obvious limitations – namely, why

allow asynchronous communication if the user can’t fully use the app during data transfer? We could improve

upon it by using a “yesno” message box and giving the user the option to cancel the transaction, but it still leaves

a lot to be desired in terms of good user experience.

The second method is slightly more complicated but will mean the user is able to access all of the functionality in

their app while a data transfer is in progress. It involves using Custom Tables.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 9

Creating a New Record

Let’s create a custom table from our data source table. In the case of our Report It app, we’re going to create our

“Report.Incidents” table as a custom table and call it “Custom.ReportsTemp”. Our ReportsTemp table should

be identical to our Incidents table, in that all fields should be the same, with all the same properties. We’re also

going to create another identical table called “Custom.ListView”:

When our user creates a new record in the app, instead of having the app create that record in our Incidents

table, we’re going to have it use our ReportsTemp custom table.

In order to implement this, we need to change all the input/output mappings on our “New Report” and “View

Reports” forms from Report.Incidents to Custom.ReportsTemp – let’s do this now.

We’re also going to change the input mappings of all the controls contained within our “tmpCollect” template

from Report.Incidents to Custom.ListView.

We also need to modify the code in the OnLoad script of our “New Report” form so that on any occasions where

data was being written programmatically to our Report.Incidents table, that data is instead now directed to our

Custom.ReportsTemp table.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 10

We then need to do the same for the OnClick script of the “GPS”, “Camera” and “Save” buttons on the form. We

should also check for less-obvious instances of “Report.Incidents” being used in our app – for example, we need

to change the DeleteRecord() in the OnClick script of the “Back” button on the “New Reports” form. (We can

use ctrl + F to easily find all instances of “Report.Incidents” in our application).

So, now we have our Report.Incidents table, containing all the data we’ve downloaded from our remote

database, and we have our Custom.ReportsTemp table, containing any new records that we’ve created in our

application. But what happens if our user wants to modify a pre-existing record in our Report.Incidents table?

Modifying an Existing Record

When our user decides they want to modify a pre-existing record, they’re going to do this by navigating to the

View Reports (frmCollect) form and selecting a record from the listview control.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 11

The listview contains data mapped from our Custom.ListView table – we’ll go into more detail about how this

table is populated later. They will then be taken to the Info (frmInfo) form, where all the fields will be populated

with details about the incident they’ve chosen to look at. The user is able to modify the Comments field on the

form, as well as indicating whether or not the incident has been completed. None of this functionality is affected

by whether or not our Report.Incidents table is locked, as we can still read data from the table while a sync is in

progress. However, once our user clicks the Save button on the form, they’ll encounter issues if our data source is

locked at the time.

So, how do we get round this?

Well, there are again two ways we could facilitate this.

The first (and simplest) would be to allow the user to view and modify a record from the Report.Incidents table

on the Info form, but prevent them from saving any changes to the record until the Report.Incidents table is

unlocked. We could implement this by checking the status of the Report.Incidents table in the OnLoad script of

the Info form, and hiding or displaying the form’s Save button dependent upon the outcome. We could then

modify our OnAsyncCompletion script to check whether or not the Info form was the current form at the time

the Synchronise() transaction terminated, then display the Save button and allow the user to modify the record if

so. While this is a perfectly viable solution, our underlying aim here is to ensure the user has access to as much of

their application’s functionality as is possible while communication between their device and the server is taking

place.

That brings us to our second (and slightly more elegant) solution, which again involves the use of our

ReportsTemp custom table. As previously mentioned, we can still read data from our Report.Incidents table

while it is locked for editing. This means that when the user selects the record they want to edit, we can copy that

record over into our ReportsTemp custom table and are then free to modify it without being hampered by our

data source being locked. While this sounds reasonably simple, there is slightly more to consider here.

Let’s go to the OnLoad script of our Info form. Firstly, we are going to obtain the record ID of the selected record

from the Custom.ListView table. We’re then going to attempt to find the record with that ID in our

Custom.ReportsTemp table. If we find it, we know that we’ve either created or modified that record in our

current “app session”. If we don’t find it, we know that the record is a pre-existing incident present in our

Report.Incidents table that needs copying over into our Custom.ReportsTemp table before we can modify it.

We can do this using a SelectLocal() statement – we know that our Record_number column is used as the

primary key for this table and is therefore a unique value, so our SelectLocal() command will only copy across the

single record that we want to work with.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 12

At present, we actually have two copies of this record (assuming of course that we’re using one pulled from our

Report.Incidents table). At some point, we will need to copy all of the created and modified records from our

Custom.ReportsTemp table into our Report.Incidents table so they can be synced with the database, which we

will not be able to do until we’ve deleted all the duplicates from the table. However, we can’t do this until we

know for a fact that the table isn’t locked for syncing, so we’re going to leave them in place for now.

When displaying the contents of the record on the Info form, we can use another new MX v10 method in the

form’s OnLoad event to check whether the record contains a photograph: IsNull().

IsNull() simply allows us to check whether or not a value is NULL – in this case, the value is taken from the

“Photo1” field of our current Custom.ReportsTemp record. If the value is NULL, we know a photograph wasn’t

taken at the time the record was created, and we can therefore hide/disable the relevant controls. Conversely, if

the value isn’t NULL we know a photograph was taken and so can show/enable the relevant controls:

The user can now edit the details for their chosen incident as required, obviously provided all the relevant

controls were input/output-mapped from/to our Custom.ReportsTemp table, as described earlier. Once the

user clicks the “Save” icon, we want to update the current record and move the user to the View Reports form.

As mentioned previously, the listview control on the form contains information pulled from our Custom.ListView

table. We need to work out how to populate this table with data from both our Custom.ReportsTemp and

Report.Incidents tables without attempting to enter any duplicate records.

We can do this in the OnLoad script for the View Reports form.

The first thing for us to do is clear all the data from our Custom.ListView table – we’re about to populate it with

new data, and don’t want any clashes.

Next, we want to copy all the records from Report.Incidents into our Custom.ListView table. We can use a

SelectLocal() to achieve this, and as we’re only reading the data we don’t need to worry about the table being

locked for syncing.

We then want to copy all the relevant records from our Custom.ReportsTemp table. At this point, the

Custom.ListView table is an exact copy of the Report.Incidents table – thus, any records from Report.Incidents

that we copied into Custom.ReportsTemp to modify are now present in Custom.ListView. If you have sufficient

SQL knowledge you could merge the two tables using an appropriate SQL Select statement in a second

SelectLocal() call. Alternatively, we can manually search for duplicate records and delete them from the

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 13

Custom.ListView table before copying in the “new” modified versions from Custom.ReportsTemp. We can do

this by using GetNumRecords() to determine the size of the Custom.ReportsTemp table, cycle through the

table using either a while statement or a for loop, and delete any records present in Custom.ReportsTemp from

our Custom.ListView table. Once we’ve cleared the table of any duplicates, we can then go ahead and copy the

full Custom.ReportsTemp table in our Custom.ListView table using a SelectLocal() command. This will give us

our listview populated with all the records from both of our tables:

We can also use a variation upon this method to merge our Report.Incidents and Custom.ReportsTemp tables

in preparation for initiating a Synchronise() transaction.

Let’s return to the OnClick script of our “Sync Data” button on the menu form. Currently, when the user clicks the

“Sync” button the app uploads and then downloads data from and to our Report.Incidents table. However, the

introduction of our Custom.ReportsTemp table means that any records that the user created or modified within

the application are now created/modified in the Custom.ReportsTemp table, and so won’t be uploaded when

calling the Synchronise() command. So before we can sync the data, we need to copy any records we’ve created

in our Custom.ReportsTemp table into our Report.Incidents table, making sure we don’t create duplicates in

the table, and then delete all data from our custom table so it can be used again. Let’s use a while loop, a

SelectLocal() and a DropDataSource() to accomplish this.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 14

The OnClick event script for the Sync Data button will now look like this:

One important point to note is that we need to make sure we’re using our data source fields’ identity properties

correctly. Given that the user will be creating records directly into our Custom.ReportsTemp table and then

copying these records over into our main Report.Incidents table we need to make sure that the Data Attribute

Auto property for our primary key field in our custom table is set to “Identity”, while the corresponding property

in our Report.Incidents and Custom.ListView tables is set to “None”:

Check also that the primary key field in our custom table has its Identity Seed property set to 0 (zero) and its

Identity Increment property set to -1, as shown in the diagram above. This will prevent MX assigning an Identity

to a new record which matches an existing identity in a record downloaded from the remote data source.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 15

Note that our example above aims to provide an illustration of how you might incorporate the new Synchronise()

function into an existing app and raises some of the issues around using asynchronous transfers. It isn’t intended

to be a full and complete discussion of using asynchronous transactions. If you choose to allow asynchronous

transactions and you also implement a mechanism to allow users to continue to add and modify records whilst

such transfers are in progress, you will need to consider carefully all aspects of the process, such as avoiding the

potential for duplicate records to be created in any custom tables used to temporarily store records. For

example, if you allow users to cancel a data transfer or a transfer doesn’t complete successfully you could end up

with newly created records in the synchronised data source table which are still marked as modified after the

transaction has ended. If these records are using an Identity field as their primary key, new records created in a

temporary custom table whilst the transfer was in progress could potentially have duplicate primary keys.

AddSystemNotification

At the moment, in our Report It app we’ve implemented our Synchronise() transaction and solved the locked-

data source problem, enabling the user to continue using the application whilst a sync is in progress. This brings

us to another issue – how is our user going to know when their Synchronise() transaction has finished? How are

they going to know whether or not their transaction was successful?

Let’s return to our OnAsyncCompletion script. Our if statement clause currently only applies to those

Synchronise() transactions with the tag “initial”. Let’s modify this to encompass our “sync” transactions and

incorporate an extended MX v10 feature: notifications. Previously notifications were only available for Android

and iOS devices. In MX v10 this has been extended to cover Windows and Windows Phone devices as well.

The simplest way to think of notifications is as slightly more complicated message boxes. A message box is

intended to inform the user of a specific piece of information, triggered by a specific event. Similarly,

notifications are designed to inform the user of something, but can be triggered by an event or at a specific time

and aren’t bound to a particular form. Unlike message boxes, they are displayed to the user even when their app

isn’t running. Note, however, that on Windows devices, the MX Client must be running for notifications to

display, which if you are using Standalone Apps effectively means the app must be running.

As an example, the notifications feature is used in NDL’s District Nursing app to inform the user when their next

appointment with a patient is due, and is triggered several minutes before said appointment. When a notification

is triggered it will appear regardless of the current form the user is on in the application (or, on most platforms,

whether or not they’re using the application at all). We are going to use the notifications feature in our Report It

app to let the user know when a Synchronise() transaction has completed, and whether or not it has completed

successfully.

Notifications are initiated using the AddSystemNotification() method. Similar to the Synchronise() method,

the first parameter in any AddSystemNotification() call is the tag parameter, used as a unique identifier for that

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 16

notification. The notification in our OnAsyncCompletion script will only be instantiated when our “sync”

transaction terminates, so for ease of use let’s call our notification “sync” too.

The second parameter of the AddSystemNotification() is the message parameter. We’re going to use another

new MX v10 method - GetNumSyncErrors() – to create a notification message which will let the user know

whether or not our Synchronise() transaction completed successfully.

The third parameter is the action/title parameter. We are going to leave the action argument blank. On iOS

devices if an action argument is specified and the user clicks on the “action” section of the notification pop-up

then the OnSystemNotification application-level event is triggered. So, we could specify “View errors” for our

action argument and have the OnSystemNotification event take the user to our error-handling form (explained

in the next section below.). In this case, we don’t want the user to navigate off our New Reports form without

either updating or deleting the record they’re working on, so we’re going to leave this parameter blank. On

Android, Windows and Windows Phone devices, however, this parameter specifies a title to be displayed in the

notification pop-up and tapping on the notification will trigger the OnSystemNotification event, whether a title

is included or not.

The fourth parameter is the date and time the notification should be displayed. In this case, we’re using the

notification as a way of informing the user that their Synchronise() transaction has completed, so we want to

display the notification straight away.

The fifth, sixth and seventh parameters are “sound”, “repeat” and “options”, respectively – we don’t want our

notification to play a sound or repeat and we’re happy with the default options so we’re going to leave all these

parameters blank.

Our finished script will look something like this:

Error Handling

So, we’ve now implemented several Synchronise() transactions and have used the notification feature to inform

the user when a Synchronise() transaction completes, as well as whether or not the transaction has completed

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 17

successfully. In its current state, our application’s system for handling errors is limited, at best – we can tell the

user whether or not their transaction encountered any errors but we can’t tell them what errors or why.

Synchronise() brings with it a whole host of error-handling methods. We’re going to use three of these methods

in our app: GetNumSyncErrors(), which we’ve already seen above, GetSyncErrorRecordIndex() and

GetSyncErrorDescription(). We’re going to use these three methods to populate a custom table containing

details of any sync errors, and then display it to the user.

First let’s create a new form in our app, containing a listview control that will display all of our error data. We

should also create a template to use as the listview input.

Next, we are going to create a new custom table in our application to store the error data. We want to have

columns in our table for the error index and error description. Let’s call this table “Custom.Errors”.

Now we have the infrastructure in place to store our data, lets return to our OnAsyncCompletion script. As

before, we can use GetNumSyncErrors() to obtain the number of errors encountered during a specific

transaction.

We’re then going to cycle through these errors, obtain the record index of the error using

GetSyncErrorRecordIndex() and then use that index and then GetSyncErrorDescription() method to get the

description of the error.

We’re then going to create a record in our Custom.Errors table and update that record with the index and

description of the error.

U p d a t i n g M X A p p s f o r M X v 1 0

Page | 18

There is also a fourth error-handling method called GetSyncErrorDataSource(). Since our Report It app only

syncs one table – our Report.Incidents table – we’re not going to include this method. However, it is a useful

tool to bear in mind when implementing error handling for apps using several tables.

As the details of any errors obtained during syncing are stored in our custom table, it means the user can receive

a notification informing them that errors are present, finish the task they were undertaking and go back and look

at the error data later.

Summary

We’ve now covered the basics of rewriting existing applications to use several new features and methods

introduced in MX v10, and have looked at implementing asynchronous communication, notifications and error

handling. For further information, refer to the Digitise Apps Online Help available by clicking the Help button, ,

within the Digitise Apps App Studio or App Manager utilities.

T h e H a y b a r n a t P a r k h i l l W a l t o n R o a d W e t h e r b y W e s t Y o r k s h i r e L S 2 2 5 D Z

0 1 9 3 7 5 4 3 5 0 0

S u p p o r t : 0 1 9 3 7 5 4 3 5 1 0

s u p p o r t @ n d l . c o . u k

	Contents
	Introduction
	Synchronise()
	Notifications
	Step-by-step…
	App Studio
	OnAsyncCompletion
	IsDataSourceLocked
	Using Custom Tables
	Creating a New Record
	Modifying an Existing Record

	AddSystemNotification
	Error Handling

	Summary

